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SPECTRUM OF TURBULENCE IN A CONTRACTING STREAM!
‘ By H. S. Rsner and M. Tucrer

SUMMARY

The spectrum concept is employed to study the selective effect
of a stream contraction on the longitudinal and lateral turbulent
velocity fluctuations of the stream. By a consideration of the
effect of the stream conlraction on a single plane sinusoidal
disturbance wave, mathematically not dissimilar to a triply
periodic disturbance treated by G. 1. Taylor, the effect on the
spectrum tensor of the turbulence and hence on the correlation
tensor 18 determined. Lack of interference between waves
follows from the postulation of a low level of turbulence; this
and the assumption of an inviscid fluid imply neglect of decay
effects. The compressibility of the main stream is taken into
account, but the density fluctuations associated with the turbulence
are assumed to be negligible; this would be the case if the turbu-
lence originated from wakes and boundary layers in the very
low-speed portion of the flow. For an axisymmetric contraction
and a particular isotropic initial turbulence, some explicit
results are obtained. The one-dimensional longiudinal
spectrum i3 found to be.distorted (as well as reduced in ampli-
tude) with s peak shifted well to the right of the initial position
above the zero of the wave-number scale. The selective effect of the
contraction on the mean square longitudinal and lateral com-
ponents of turbulent velocity is found to be given unigquely when
the initial turbulence i3 isotropic, regardless of the details of
the spectrum. If the initial spectrum i8 anisotropic, as, for
instance, that produced by a damping screen, then the selective
effect is aliered.

In a crude extension, decay effects outside the scope of the
theory are allowed for in first approximation. With this
extension, a comparison with experiment 18 made of the selective
effect on turbulent intensity where the estimated decay effects
are comparable with the contraction effects. The agreement is
good for the longitudinal component, very poor for the lateral
component, the experimental data themselves being n conflict.

INTRODUCTION
The generation of a wind-tunnel flow is always accom-

panied by a certain amount of turbulence; this is one respect °

in which the flow fails to simulate free-flight conditions.
Measurements in the tunnel, particularly those sensitive to
boundary-layer behavior, are known to be affected by this
turbulence. Accordingly, the tunnel designer attempts to
reduce the intensity to the lowest practicable level. The
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“Spectrum of Turbulence in 8 Contracting Stream,” by
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use of honeycombs and damping screens in a large low-speed
section (settling chamber) followed by a sharp contraction
to the much-higher-speed working section is known to be
effective. The honeycombs and screens located in a low-
speed section reduce the absolute level of the turbulence
with little drag penalty; then the relative level is greatly
reduced by the large gain in tunnel speed through the con-
traction, aside from any effect of the contraction on the
absolute level.

Once the characteristics of honeycombs and screens are
known, the further quantitative estimate of the reductlon in
turbulence involves & knowledge of the effect of the tunnel
contraction ?* on the turbulence. It is known that the
longitudinal component of the turbulence is greatly reduced
(in absolute value) by the contraction; the behavior of the
lateral component appears, on the other hand, to vary from
no change to 2 substantial increase. Prandtl (ref. 1) ob-
tained a quantitative estimate of the first effect by consider-
ing the conservation of energy for a perturbed longitudinal’
filament: if the initial stream speed is U, the filament speed
U+, with 4« U, and the final stream speed is [U, then
the final filament speed must be IU41"u; that is, the con-
traction reduces the longitudinal perturbation velocity u by
the factor [™!. For the lateral effect, Prandtl applied con-
servation of momentum to & small rotating cylinder of the
fluid, with its axis cross stream, as the fluid traversed
the tunnel contraction. He concluded that the lateral
perturbation velocity » is increased by a factor /.

Prandtl’s considerations on the effect of a stream con-
traction were limited, as has been noted, to particular
idealized “eddies.” G. I. Taylor (ref. 2) later attempted
more realism by treating & mathematically defined model of
turbulence which amounted to vortices in parallelepiped
partitions arranged in a regular three-dimensional array.
The changes in vorticity on traversing the contraction were
determined from a theorem based on conservation of circu-
lation for an inviscid fluid; the corresponding altered turbu-
lent velocity pattern was then calculated. The final result
of the analysis consisted in expressions for the root-mean-
square longlt.udmal and lateral turbulent velocity compo-
nents 4’ and » downstream of the contraction expressed as
ratios of the corresponding values upstream.

STheconsidarationsorthispaperamnotllmitedtoa wind-tannel contraction: they may
us)uedtoanystreamtubeorvnryingmsectionlargocomparedwiththawaleo(the
enca.
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The initial condition of isotropic turbulence (mean values
unaffected by rotation or reflection of axes) was approxi-
mated by specifying the vortex partitions to be cubical. For
this case the reduction in the longitudinal component u’ was
found to vary more nearly like 1.5 [~! than the value [~! sug-
gested by Prandtl. No explicit result was found for the
variation of the lateral component, however: the calculations
contained a free parameter.

Taylor’s results for the longitudinal component a.greed
fairly well with the experimental data then available, but it
is now considered that the measurements were made too close
behind the screens for the sereen-produced turbulence to
have been isotropic. On theoretical grounds, the objection
to Taylor’s theory is threefold: first, the decay processes of
turbulent mixing and viscous dissipation, which result in a
reduction of the mean intensity with axial distance in the
wind tunnel, are neglected; second, the assumed model of
turbulence fails to exhibit the spatial and temporal random-
ness of actual turbulence; third, no choice of the parameters
in Taylor’s model corresponds to isotropy. In & sense all
three objections apply likewise to Prandtl’s results: no model
was employed in his considerations, and hence no distinctions
between the effects of isotropy and anisotropy were made.

The second and third objections can be removed by work-
ing, not with a model of turbulence, but instead with a
Fourier integral representation of a random turbulent field.
The integral can be interpreted. as a superposition of plane
transverse sinusoidal waves of all wave lengths and with
apparently random orientations and phases. This aggregate
of plane waves constitutes the (three-dimensional) spectrum
of the turbulence. Only the statistical aspects of this
spectrum will be known, not, for example, the detailed phase
relations. Mean-square velocity components ‘may be ob-
tained by an integral of certain spectrum functions in which
the phase relations are suppressed; these functions are in-
cluded in the ‘spectrum tensor’ (ref. 3).

Taylor’s concepts may be applied to find the effect of a
stream contraction on a single plane wave. The effect
under the assumptions is linear; therefore, the superposition
implied by the Fourier integral may be employed to obtain
the contraction effect on a field of turbulence. In particular,
if the initial spectrum tensor is known, the final spectrum ten-
sor i8 determined; the initial and final mean-square velocity
components then result from quadratures. Indeed, from
" the same information, changes due to the stream contraction
in correlations of velocity at different points may be calcu-
lated: use is made of the fact that the correlation tensor
is an inverse Fourier transform of the spectrum tensor
(ref. 3).

Accordingly, the injection of the spectrum .point of view
into Taylor’s original concept of the contraction effect
makes possible a more realistic calculation of the changes
in mean-square velocity components. In addition, it
provides much more detailed information concerning
changes in the statistical properties of the turbulence; that

is, it provides the changes in the spectrum tensor and in the
correlation tensor. )

The ideas just outlined are developed in the present paper.
The first section is devoted to an account of turbulent
spectrum analysis in a form specially adapted to the analysis
of the contraction effect. In this account, which is a general-
ization of a development in reference 4, the role of the spec-
trum tensor is subordinated to that of the individual Fourier
components (plane waves) in contradistinction to the cus-
tomary treatment. This approach has perhaps an auxiliary
merit in providing some better physical insight into the
significance of the spectrum tensor.

Next the effect of a stream contraction on a single plane
wave is calculated by an application of Taylor’s concepts.
Thé treatment is slightly more general in that compressibility
of the main stream is allowed for. The density fluctuations
associated with the turbulence are assumed to be negligible;
this would be the case if the turbulence originated entirely
from boundary layers and wakes in the very-low-speed portion
of the flow. Following Taylor, the problem is linearized by
postulating a sufficiently weak turbulence so that the self-
distortion of the turbulent eddies is small compared with the
distortion imposed by the contraction of the main stream;
this together with the assumption of an inviseid fluid 1mphes
neglect of the decay of the turbulence.

In succeeding sections the spectrum and correlation tensors
downstream of the contraction are expressed in terms of
the corresponding initial tensors. For the special case of
an axisymmetric contraction and isotropic initial turbulence,
the ratios of the root-mean-square longitudinal and lateral

velocity fluctuations downstream and upstream are obtained

explicitly in terms of the parameters defining the contraction.
For a particular subcase where the initial isotropic spectrum
tensor is specified, the corresponding ‘one-dimensional’
spectrums (as would be recorded by stationary hot-wire
probes) upstream and downstream of the contraction are
calculated; the specification is such that the upstream one-
dimensional spectrum corresponds to experiment (ref. 5,
p- 35) in a number of cases of isotropic turbulence.

Most of the calculated contraction effects are amenable to
experimental checks either directly or indirectly. The
available experimental data, however, are limited to the
changes in the root-mean-square velocities. A comparison
with these experimental data is given with an estimated
allowance for decay effects’ outside the scope of the theory.
Design curves of the changes in the root-mean-square velocity
components neglecting decay are included for engineering

oses.
PHP SPECTRUM ANALYSIS

Representation of turbulence by superposition of plane

'sinusoidal waves.—Suppose ¢, ¢z, ¢ represent the com-

ponents of velocity in a turbulent field; that is ¢;, g;, and ¢,
vary in an apparently random manner in space and time,
and the mean values G;=q;=gs=0. Subject to certain
conditions, & snapshot of this field at any instant can be
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represented as a set of three-dimensional Fourier integrals
Qa(Z1, 22, Ia)=ffo,, (1, bz, keg) ¢ Srmthamatbsts) d ey dkegd b

where a=1, 2, or 8 and the significance of ki, ki, and k;
will be brought out later. A continuous representation of
the turbulent field is obtained by allowing the @, to vary
with time. .

It will be convenient to abbreviate the Fourier integral to

w@= [ [ [0.erat@ (19) -

and to introduce the companion equation

Qu(b)=87° f f f e (1b)

where k=ki, ks, ks; z=2,, 23, 23; dr (z)=dr,dzde;. The
second equation allows, in principle at least, the coefficients
Qu(E) to be calculated. Mathematically, g.(z) and Q.(k) are
termed three-dimensional Fourier transforms of each other;
use will be made of this relation later. :

The velocity components g, are connected by the condition
of continuity. In many cases of practical interest, these
turbulent velocities originate from boundary layers and the
wakes of obstacles in flows of low subsonic speed, so that
associated density fluctuations may be ignored; this is still
permissible when the turbulence so produced is transported
by a high-speed stream. Thus the incompressible form of
the continuity equation may be used and the result is

Qlkl+sz2+ Q3k3=0 )

This relation may be written more compactly as
> Qaka=0 (2)

Physical interpretation.—The amplitude components Q.
are complex in general. According to equation (1b), then,
the requirement thdt the velocity components g, be real
implies that Q.(—k) is the complex conjugate of Q.(k). If
corresponding terms for k and —k in equation (1a) are paired,
their sum is thus equal to the real quantity

2(Re Qo) cos (k-z)—2(Im Qo) sin (k-z) 3

The imaginary parts cancel in the pairing, which implies that
they contribute nothing to the integral. Expression (3)
represents a pair of plane standing waves, a cosine wave and a
sine wave, with normals in the direction k=(k;, k., k),
where z=(x,, 23, ;) i8 the radius vector to any point. The
veetor k is termed the wave-number vector and its magnitude
k simply the wave number; the corresponding wave length is
27 divided by the wave number. Since k is nerpendicular to
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the wave front, it is sometimes referred to herein as the “wave
normal.’ .

The continuity condition, equation (2), states that both
the real part (Re @.) and the imaginary part (Im @.) of the
amplitude vector Q=0Q.= (@, @, @) are perpendicular to
the wave nbormal k; that is, both waves of expression (3) are
transverse. For each wave any one of the parallel planes
containing both the local velocity vector ¢ and the wave-
number vector k& (which is perpendicular to Q and hence to q)
is called the plane of polarization. The cosine wave (real
part) and sine wave (imaginary part) may be polarized in
different planes in general; the necessary and sufficient con-
dition that they be polarized in the same plane is

ReQy ReQ. ReQy @
Ile_Ing ImQa

Equations (1) are now seen to represent s superposition of
plane sinusoidal waves (Fourier components) with all orienta-
tions of the wave fronts (all directions of the wave normal &)
and all wave lengths (all wave numbers k). Each wave is
transverse, and all planes of polarization. are permitted.
For each value of k there exist a cosine wave and a sine
wave; their respective amplitudes and planes of polarization
are different in general. The complex amplitude components
@.(k) express, in their real and imaginary parts, how the
respective amplitudes and planes of polarization vary with
the wave-front orientation and the wave number.

Mean values: correlation tensor.—Consider the spatial
mean value of the product of the velocity component ¢. at z
and the velocity component g5’ at z'=zx-r as z varies but

- the separation r of the two points remains fixed during the

averaging process; this mean value is called a velocity cor-
relation and is given the symbol B.s(r). There are nine such
correlations, corresponding to =1, 2, 3, and B=1, 2, 3.
The form R.s(r) has been shown to transform like a second-
order tensot and has been designated (sometimes divided by
7®) as the ‘correlation tensor’ (ref. 6).

Evaluation of correlation tensor in terms of spectral
quantities,—The basis of the idea that the correlation tensor
might be expressed in terms of individual-wave parameters
is drawn from reference 4. In that paper mean-square values
of q1, ¢, ¢z in terms of such parameters are discussed; these
constitute the diagonal terms of E.s(r) evaluated at r=0.
The following derivation of R.s(r) amounts to a generaliza-
tion. of the derivation of E;;(0) given in that reference.

Assume that the turbulence is confined to a large, but not
infinite, parallelepiped of edges 2D, 2D,, 2D; and vanishes
everywhere outside.! The space average R.(r) is to be

3 If the statistical properties of the turbulence are independent of position (homogencous
turbulence) and time-independent, an average at a given time over all space equals an average
at a given point (or pair of correlated polnts) over all time; a proof is given in appendix B.
If the statistical properties vary slowly with time, the space average will still approximate a
time average over an interval just long enough to smooth ont the fluctuations.

1 The space integral of the square of any component velocity is thereby bounded, whichisa
prerequisite for the existence of a Fourler integral, equations (1); in other words, equation
(1b) shows that Q- must depend on the volame 8 D; D1 Dy of the reglon within which g« differs

from zero: if this volume s infinite Q. Is infinite, and the Fourler integral, equation (1a), does
not exist. .
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taken for all points z in the interior, the separation 7 remaining constant and very small compared with D; ;5.

The average is

R = DU D=5y | o [ { | f [ f | Qan)Qﬂ@e*Ew-°s+z>ldf<1c)df<_k0§dmldxadxs

or, interchanging the order of integration,

wer sin- (k1+k1')D1 sin (ka"l—kg')Dg sin (ka ‘i“ka')D;

~odmf [ J[fewa

Put Kl_kl_l_kl y Kg—kg"l‘kg 3 and .K3 k3+k3
ky'riky'rat-ky'ry

kit+Ey
Then reca.]]mg that k&

Pt By drk)dr &)

=(ky, ki, ky), dr(k)=dkdksdk;, etc., and k'-r=

kst-ky

Rﬁ(r>=mf f [ Qutts bk { | f [ @@=t Kt K=

ei[(K,—kl)r1+(K2—k,)r,+(K “kyrg S0 KDy sin KaD; sin K3 D AR GEAK, S dleidhesdles

The inner integral approaches a limit as the parallelepiped edges 2D,, 2D, 2D; become indefinitely la.‘rge.

limiting case tbe correlation tensor is then

e e ;e
‘Fot this

Rat)=lim | f [ @ulk e kr. — Iy ke~ ks dhsdhs=lim 2/ [ worwerem  ©
where Qp* (k)= Qg( k)] is the complex conjugate of Qs(k) and r is the volume 8D1D,D3 of the parallelepiped.

Identification of lim §1-£3 Q.Qs* with spectrum tensor.—
r—e

If the field of turbulence is homogeneous, the correlations
should be independent of the volume 7 averaged over when this

3
volume is sufficiently large; thus lim'%’i— Q-Qs* should exist.
From the mathematical standpoint, equation (5) shows that
Re(2) is the Fourier transform of lim 37 Qu(k)Qs*(%), snd

conversely; since it is known that the integral of |R.s(r)]|
over all r is ﬁmte, the inverse Fourier tra.nsform relation

ensures that hm — Q.,QB exists. Finally, since the Fourier

3
transform of & function is unique, lim_ST1r Q) Qs*(k) may

be identified with-the form I'.s(k) defined by Batchelor (ref. 3)
as the Fourier transform of R.s(r). The form T.s(k) is
known as the spectrum tensor. The Fourier transform rela-

" tions connecting the spectrum tensor and the correlation
tensor are summarized as

Tl =gs f f Jraverrw o0

Rust)— f f [Pusre e (6b)

By use of the Fourier transform relation, Batchelor demon-
strated that I'.s is a second-order tensor and obtained a
number of its properties. Thus, for example, T'.s is complex,
in general, with T's,=T.s* and the diagonal elements T'..
are real; also, Tog(—k)="Ts.(k). Itis of interest to observe

that these same properties result immediately from the
identification of lim 5T Q.Qs* with Tep. Thus QuQy* is
complex, in general; QsQ.* equals [Q.Qs*]*; and Q.Q.* is,

of course, real. TFurthermore, since Q.(—k)=Q.*(k),
Qa((z)Lc)Qa"(—l_t) equals Q.*(k)Qs(k); hence Tup(—Ek)=
Tpa(k).

The distinetion between cases where I'ys is real and cases
where it is complex may be given & physical interpretation.
The product Q.Qs*, and correspondingly T.s, is seen to be
real when the condition equation (4) is satisfied. This
implies that the cosine wave and sine wave associated with
wave number k are polarized in the same plane. The alter-
native condition where @.9s* and hence I, is complex
implies polarization of corresponding cosine and sine waves
in different planes. The velocity pattern of such & pair of
waves is quite interesting: successive velocity vectors along
aline in the direction of the wave normal k turn progressively
about this line in spiral fashion; the tips of the vectors trace
out & helical curve on a cylinder of oval cross section.

Energy spectral density.—Hach of the diagonal elements
Ty, Ta, and Ty of the spectrum tensor T'ss may be inter-
preted as an energy spectral density. Thus, according to-
equation (6b)

Ru(0)=u =fjfrll@)df &)

!
Therefore, the diﬂ'erentip.l% Tudr(k) represents the contribu-

tion to the kinetic energy component% U per unit mass

made by waves with wave number within the range dr(k).
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One-dimensional spectrum.—The elements of the three-
dimensional spectrum tensor are not directly measurable;
they may be obtained by taking the Fourier transform of the
measured correlation tensor. A hot-wire probe placed in
the moving stream will, however, develop a fluctuating out-~
put voltage whose (one-dimensional) frequency spectrum
(ref. 7) is related to a diagonal element of the three-dimen-
sional spectrum tensor. Thus by equation (6b) the contri-
bution to the mean-square velocity component g.2(=R..(0))
from all waves with wave-number components in the direc-
tion of the z,-axis between |k;| and |k,|+|dk| is

F.,(kl)dkls2< fmf I‘aadkgdlc3>dk1 S

the factor of 2 accounting for suppression of negative values
of k,. The function F,(k,) is the one-dimensional spectrum
corresponding to the velocity component ¢.; the values

a=1, 2, 3 correspond respectively to the longitudinal and

two lateral spectrums. The particular spectrum obtained
depends on the arrangement of the hot-wire probe elements.
EFFECT OF STREAM CONTRACTION :

Consider now that the turbulent velocity pattern ¢, ¢z, ¢
is carried along by an inviscid general stream with velocity
U(zy) in the z-direction. Consider also that ¢, gi, ¢s are
so small that their effect on the streamlines may be neglected
as the flow traverses a wind-tunnel contraction. The con-
traction will, however, distort the shape of fluid elements.
(See fig. 1) The vorticity distribution will be forced to
alter accordingly to conserve the circulation about each
element. The net result will be an altered pattern of turbu-
lence. Each plane wave (Fourier component) @y, s, @set=
will, in fact, be altered independently under the linearizing

assumption to be made; the.over-all effect on ¢, g2, g3 can .

be obtained by the summation expressed by equation (1a).
It thus suffices to consider the effect of the contraction on
o single representative plane wave.

EFFECT OF CONTRACTION ON REPRESENTATIVE PLANE WAVE

Velocity and vorticity at upstream station.—Designate by
A 2 reference station upstream of the contraction and by B a
reforence station downstream of the contraction. (See
fig, 1.) Let a typical Fourier component (plane wave) of
the turbulent field g.(e=1, 2, 3) at station A be represented
at time =0 by

Gut= Qe e ®)

This wave, equation (8), is supposed to be carried along by
the main stream with velocity U.

The vorticity @« is obtained from the curl of equation (8)
as

5,;4:7',;5“31765@.,‘46‘ &2 9) -

0, if any pair of subscripts are equal
where eag.,={1, if af~y are in cyclic order
—1, if B~ are in anticyclic order ~

‘
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(a) Tunnel geometry.
(b) Stream tube geometry.
FI1GURE 1.—Schematic representation of flow contraction parameters.

Digtortion of fluid element in passage through contrac-
tion.—Suppose the contraction is such that the stream
velocity U is increased by a factor [, between stations A and _
B while the breadth and the height of the tunnel are reduced
by factors 4 and I;, respectively. (See fig. 1 (a).) Im
traveling from A to B, an initially cubical element of fluid
of edge D will be distorted into a parallelepiped of edges
LD, LD, ;D (see fig. 1 (b)); & particle in the element original-
ly (¢=0) a vector distance z from a corner particle will finally
(t=1%) be found a distance { from the corner particle, where £
is related to z by -

s=lLz,

E=U0Lz,
b=l

In this argument the modification of the streamlines due to
the turbulent velocity fluctuations has been neglected.
This implies that the relative displacement of two adjacent
particles due to the superposed turbulent motion is small
compared with the displacement due to the tunnel contrac-
tion. This key assumption, due to Taylor (ref. 2), linear-
izes and vastly simplifies the problem. The limitations
imposed by the assumption are discussed later under DECAY
CONSIDERATIONS.

The velocity ratio [, and the lateral and vertical contrac-

(10)

tion ratios §; and I, hre related by the continuity condition

0'l1[Ql3= 1
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where ¢ is the ratio of stream densities at stations B and A;
the density is considered uniform at each station in accord-
ance with the initial assumption of negligible turbulent
density fluctuations.

Vorticity at downstream station.—The vorticity is carried
along by the flow, the fluid elements undergoing the distor-
tion pictured in figure 1 (b), to the approximation used.
During the motion the strength changes in such a way as to

maintain the constancy of circulation of the fluid elements.’
The changes are expressed by the equations for the transport

of vorticity in the Lagrangian form, due to Cauchy (vef. 8,
p. 205). .
bga

R =0 D:cp

where ¢ is the density ratio between stations B and A, and
the derivatives df,/Oxs express the effect of the fluid distor-
tion.® Evaluation by means of the distortion equations (10)
yields simply

Do —al ot S
or, in expanded form

OJI = 0'l1(.01
oP=alos*
@3%=olswy*

These equations relating downstream and upstream vorticity
embody the entire dynamics of the contraction effect. The
equations are not limited to the plane sinusoidal waves dis-
cussed earlier, but apply to any (weak) vorticity distribution
whatsoever.

The above derivation of the vorticity changes is substan-
tially in the form given originally by G. I. Taylor (ref. 2) for
the case o=1 (incompressible flow). In order to assess the
influence of the simplifying assumptions a more general
derivation based on the Navier-Stokes equations is given in
the section entitled DECAY CONSIDERATIONS.

By virtue of equation (9) as applied to equation (1ia),
the vorticity at station B is obtained explicitly as

J’aB='iUlap'E eaprkpQyte'e
it 4

(11a)

(11b)

where, it will be remembered, z is the radius vector to a
fluid particle at time {=0 when the fluid element is at
station A in the moving coordinate system of figure 1 (b).
The corresponding vector to the particle at time ¢=¢, when
the fluid element is at station B, is { in that figure. When
equations (10) are used to express z in terms of £, the ex-
ponential k-z becomes, in expanded form,

_kib ) kel | Esh

3 This statement 13 exact for the ted inviseid fluid. The modification produmd by
the diffugive effect of viscosity, in the cass of a gas, becomes appreciable for the smaller ed
or higher wave numbers; for this analysis a criterlon for neglectorviscouseﬂectsis
k’<<ld Uldr]. (Ses DECAY ooxxsmm-novs, equation “43). )
°Tbmequationsre£a-toammovingwlth somo fluld partfcle rather than axes fixed as in
reference 8; the form of the equations i3 unaflected.
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The right-hand side may be expressed as « - £ where
ky ks ks

=gy

Ll
defines & new wave-number vector.

Velocity at downstream station, general case.—The
velocity distribution whose curl in the £, &, & system is
given by equation (11b) and which satisfies continuity is
found to be expressible in the form

QaB=QaBei£-§

d— (0= 3 e

e
where x is the magnitude of the wave-number vector x.
This result is the general solution for the contraction effect
on a single plane wave.
Equations (12) and (13) admit of & simple (but not obvious)
geometrical interpretation: traversal of the siream coniraction
alters the initial plane wave, equation (8), so that s wave-

with
(13)

number vector k=(ky, ks, k;) 18 transformed into 5-’5—; T,
1 3
and its amplitude vector (@, QA, DA s transformed into the

projection of (Qrtfl, Qifl, QsA/l) on a plane normal to the -

new wave-number vector .

Velocity at downstream station, axisymmetric contrac-
tion.—In case the stream conftraction is axisymmetric,” & con-
siderable simplification results. The condition for axisym-
metry L=1I;, with use of the continuity equation (2), reduces
equations (13) to

J5= _ O kithitky? )
ll €k12+k22+k3

1 Qrikiks(1—¢).

Qf—z[é¢+a?izﬁﬁ?

) 4 _l QlAklk (1“"6)
QSB— lz |:QSA—l_éklﬂ‘*'I';:"Flf?a2 J

where e=L%l>. The considerably greater complexity of
equation (13) is perhaps obscured by the purposely expanded
form of equations (14).

If the initial wave normal k is perpendicular to the (longi-
tudinal) z;-axis, the component %, vanishes and equations
(14) reduce further to

(14)

Y

= QIA/ZI
@°,=0:/L (15)
Q38= QsA/la

The same equations result when 04 may be neglected in
comparison with Q;* and {4, that is, when the amplitude
vector is substantially normal to the x;-axis. Equations (15)
state that an axisymmetric contraction defined by Iy, Iy alters

7 A contraction such that all cross sections of the tunnel arg slmilar, whenee laeal, 18 termed
arisymmetric; the sections need not be cireular,

a2y

/
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these waves by a factor of 1[I, in the longitudinal velocity comi-
ponent and a factor of 1/l; in the lateral velocity components.
These equations apply only to particular types of wave; yet when
the contraction effect is later integrated over the random aggrega~
tion of waves representing isotropic turbulence, the over-all
results are found not to differ greatly from the simple factors
1/l and 1/La, respectively.

The same factors were obtained by Prandtl (ref. 1) for
other special disturbances: the factor 1/, from energy con-
siderations for purely longitudinal disturbance velocities, and
the factor 1/I; from momentum considerations for a rotating
cylindrical element of fluid with axis normal to the stream.

EFFECT OF CONTRACTION ON SPECTRUM AND CORRELATION TENSORS

Effect of contraction on correlation tensor.—The analysis
herein leads first to the changes in the spectrum tensor
T.gt (k) —>Tas?(x). Then the corresponding changes in the
correlation tensor may be obtained from the Fourier trans-
form relation, equation (6b):

Rus()= f f f T (k)% 1d (k) (16a)
Rof(r)= f f f rgﬂ(ﬁ)efs-:df(g (16b)

In succeeding paragraphs I'.s”(x) will be determined in terms
of the initial spectrum tensor T.s*(k) for various cases.

Spectrum tensors at upstream and downstream stations
in terms of @..—In an earlier discussion, the Fourier coeffi-
cients @. were chosen so as to define a field of turbulence
confined to a large parallelepiped of volume 7, and vanishing

everywhere outside; for this case 11m—8—:'—-—3 Q.Qs* was to be

identified with the correlation tensor I'.s. For station A
upstream of the contraction it will be convenient to special-
ize this parallelepiped to 2 cube of edge D. Such a cube
will, however, be distorted into & parallelepiped of edges
LD, LD, I;D by the stream contraction by the time it reaches
station B downstream. (See fig. 1(b).) The spectrum
tensors for stations A and B, respectively, are therefore

rt = lim 55 QAR
an
Tog”(1)= hm—D— Q)R ()

Evaluation of spectrum tensor at downstrea,m station,
general case.—The identifications made in the last para-
graph allow the spectrum tensor to be evaluated at station
B in terms of the spectrum tensor at station A and the param-
eters [, L, I; defining the stream contraction between sta-
tions A and B. Tor a single plane wave g.A=(.4¢'kz,
which is transformed by the contraction into §.°={Q.2&~,
equations (13) give

0= (00, %55)
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In the Fourier integral representation §.* is to be interpreted
as dg.*, 3 8s dg®, Qi as Qu*dr(k), and Q.7 as QPdr(x).

Accordingly,
QuP— ll% ( Q.4 2 Qf.«“lual’L

since l)lds=dr(k)/dr(x). Thus
QaBQﬂB# ll l2 lﬁ [QQAQﬂA* _I_Z( Qa“?v::k kﬁ

QBA*Q1Ak7k +Q7AQ6{*L Esk.. kB
l.,’xz 2[521\"

(18)

The corresponding relation between the postcontraction
and precontraction spectrum tensors is, by virtue of equa-
tions (17),

(_)___[ A(Lc)_l_E ( Pa*/A(L:)zk'rkﬁ_I‘vﬁd(L‘;)k'ykc_h
1.2 LA
‘Tost (k) ko kesk ok
& (')gla : ")] (19)
where £ is related to « by
kl, kz, k3=l1 K1,y ngg, l3K3 (20)

Bpecial case: axisymmetric contraction but arbitrary
initial spectrum.—When the contraction is exisymmetric
(ls=10L;), the equation of continuity in the form

Zy)k.,l’.,a“=0 (21)

may be used to simplify equation (19).

The result may be
written

’ L Tartks+ gtk —
rwB(Q:% I‘aBA(LC)JF( 1 :];;_ll_ﬁk;_l)_l;;gl e)+

I‘uAklgkakg (1 - G)
(eklz_l_kga_l_kst)z (2?')

where the ratio e=0?/l;*; for a large speed gain in the con-
traction 1.

Special case: axisymmetric contraction, isotropic inmitial
spectrum.—A further simplification occurs when the tur-
bulence at station A is isotropic. In that case, the spectrum
tensor I's®(x) downstream of the contraction can be expressed
explicitly to within an unknown multiplicative factor G@(k).
This results from the fact (ref. 3) that I'.s*(k) must then be
an isotropic second-order tensor; the isotropic property

together with the continuity condition, equation (21),
requires I'os(k) to be of the.form
Topt(k)=G(k) (K*0as—haks) (23)

where

5 ____{1 for a=g
*®710 for a=p
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The right-hand side of equation (22) may be evaluated
by means of equation (23). The diagonal terms reduce to
relatively simple forms:

(B2 —Fk Dkt

l22
0=y, 6O r iRt s’y (24)
) 282k 2(1 —
Tu(9=h G0 | ki~ T T
k12k22(k3—k12)(1 —_ E) (25)

(eki®+ks*+ksD?
and I'y®(x) is obtained from I'»®(x) by replacing %; by k; and
vice versa. The 'relation, equation (20), between k£ and x
applies here.

One-dimensional longltudma.l spectrums.—If the form of
the intitial spectrum tensor I'ws4(k) is known, the correspond-
ing one-dimensional spectrums F.4(k;,) can be calculated,
according to the defining equation (7) as applied at the
upstream station A:

FA=2 f f Tt (s, ko, kdheadley

A particular case of isotropic turbulence is of special interest
(ref. 4): In equation (23) for T'4(k) the function G(k) is
taken to be N(*++v% 3, where N;y are constants. Then

(26)

o Nkl 2D
(Y FENEEE
and after integration
‘ __aN
=tz 1

This one-dimensional longitudinal spectrim is of the same
form as an empirical relation obtained in reference 5 for that
of isotropic turbulence in the initial period; this agreement
is the special virtue of the form assumed for G(k).

The one-dimensional lateral spectrum functions cor-
responding to the same @(k) are readily evaluated; they

are A
N3k +)
2(k 4+

The equality of the F3 a.nd the F; functions results, of course,
from the isotropy of the turbulence.

The effect of the stream contraction on these one-dimen-
sional spectrums is found by employing the postcontraction
value of T, that is, the value I'..® appropriate to the
downstream station B. Since I'..” is a function of the local
wave-number vector x at station B, the equation correspond-
ing to (26) is

(kl) Fy (kl)—

FB2=2 ffl‘aaB(Kl, K2, k3)d x2d K3

which is a function of «;.

For performing the integration and making later com-
parisons of spectrums, it is convenient to trapsform from
K1, Ka, K3 tO ky, ks, ks, where

K1=k1ﬂ1
K2=if2/lz

Ka=ka/l3
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and to define F.%(k)=l—'F.?, such that ﬂ " FoB(e)dly =

j; : FPdr; thus

-

The spectrum tensor elements I'..” following an axisym-
metric contraction have been evaluated in equations (24)
and (25). With these values inserted and @(k) specified as
before, the integrations of equation (25) are best effected in
polar coordinates. The results are expressed most simply
in terms of a ‘normalized’ longitudinal wave number % /y
as incorporated in the two parameters

ky ks ks

AN dkadks (27)
1

.y
="5+1

Gk]’—kla

i= —1

The final result for the one-dimensional longitudinal spec-
trum following an axisymmetric contraction (;=1l;) is

2N

P (k) =12z e

[ s+attet+

<2+4s+2t+st+§§) In (ﬁ_ﬁ)] (28)

The corresponding result for the one-dimensional lateral
spectrums following an axisymmetric contfraction is

=N
2l’2t2

sa-a6-1 {2 (2)+

i [68-2I—5t_{_(3+t)$:33;|‘t) In <8_‘°‘H>:|}> (29)

and for <1 (large speed gain) a simple but very close ap-
proximation is .

(3s—2)2
O

3 (k)=Fs (k)=5

N 14+2k3
2Ly (14 ki (vP)?

(The corresponding approximation for F\#(k,) is not simple
enough to warrant noting.) The parameters l;, 5;=I;, and
e=L?l;* are related to the initial and final Mach numbers of
the main stream, if the fluid is air, by the equations

4+ 0(e,elne)

Fy? (k)=

)
L= giﬁj ’> - (302)

< ) (21%5)
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For incompressible flow (M5, M,—0) these reduce to
l1= UB/ UA

L=l
E=l1—3

These postcontraction spectrums, equations (28) and
(29), are compared with the initial spectrums in figures 2
and 3, respectively; the comparison is based on an assumed
initial stream Mach number of 0.05 (station A) followed by
an axisymmetric contraction such that the final Mach num-
ber is 2.0 (station B); the corresponding parameters are
1,=29.8, ,=0.382, ¢=0.00016. Consider first the longi-
tudinal spectrums, figure 2. Normalizing factors are in-
corporated such that the areas under the two curves, if re-
plotted on a linear scale, would be the same; this normali-
zation serves to differentiate changes in shape from changes
in amplitude. The figure exhibits a rather striking distor-
tion of the spectrum after traversing the stream contraction:
the peak spectral density is shifted from zero wave number
to ky/y=1.4 along with a general shift of demsity to the
higher wave numbers. Associated with this change in shape
is o reduction in amplitude by the factor us*/u.?, u.? and uz?
being the respective integrals of the spectral density curves.
These integrals are evaluated in a later section.
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Fioure 2.—Comparison of one-dimensional longitudinal spectrum upstream (Fft) and
downstream (FP) of axisymmetric contraction. Curves normslized to sams ares. Iso-
troplo Initial turbulence with G(E)=N(i{~%)-, Ma=0.05, Mp=2.0, corresponding to
1=220,821, «=0,0001637.

The correspondmg comparison for the lateral one-dlmen—
sional spectrums is made in figure 3. In this case the axi-
symmetric contraction has made very little distortion in the
spectrum. There is again a change in magnitude (this time
an increase) in the ratio v5%/v4’.

The changes in magnitude (that is, the changes in area
under the spectral density curves) correspond to the changes
uztfus® and v5%/vs? in the mean-square components of turbu-
lence and are, at least qualitatively, well-known. The pre-
dicted changes in the shape of the spectrum curves are ap-
parently new.

In the above comparisons both precontract.lon and post-
contraction spectrums have been expressed in terms of the
precontraction longitudinal wave number k;, whereas the
local postcontraction wave number is x=k,/l;. Consider,
however, a representative longitudinal wave which has the
form cos kyx at station A and cos x# at station B. If z and ¢

" the evaluation of the general correlation tensor.
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FIGURE 3.—Comparison of one-dimensional laternl spectrum upstream (F#) and down-
stream (F,") of axisymmetric contraction. Curves normalized to same area. Ysotropic

initial turbulence with G(k)=N(k31+9)-3; M ,=0.05, M p=2.0, corresponding to I;=29.821
«=(0,0001637.

are identified with the respective distances swept in time ¢
by the moving waves over stationary hot-wire probes at
stations A and B, respectively, then kax=Fk U, and x¢=
K1 U3t='1;—1 ll UAt.
- 1

hot wire in both cases is %,U,/2x. The comparison based
on k; therefore constitutes, in effect, a comparison of the
time spectrums that would be seen by stationary hot-wire
probes, in contradistinction to the space spectrums
discussed in the earlier parts of the paper. ‘

Thus the (temporal) frequency seen by the

EFFECT OF CONTRACTION ON MEAN-SQUARE VELOCITY COMPONENTS
FOR ISOTROPIC TURBULENCE
The mean-square velocity components of the turbulent
field may be identified as the diagonal terms of the corre-
lation tensor R.s(r) with r set equal to zero. Thus

F=Ry(0)
7 Rus(0)

E=R33(0)

)

where u, », w bave been written for ¢, g, gs, respectively.
The evaluation of these means is much less laborious than
In par-
ticular, the evaluation of the ratio of the means -uzfu.?,
etc., may be made when the initial turbulence is specified
to be isotropic-but no further details of its spectrum are
known. These ratios will be calculated in the' following
paragraphs.

Evaluations of 4 and #* at upstream station.—According
to equation (6)

Ry;4(0) =E=fj‘f1‘u“(lﬁ)df (&) -

For isotropic turbulence Tus has the form specified in equa-
tion (23), whence

= f [aw@—raa-w
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where G(k') is an arbitrary function. It is convenient to
transform to spherical polar coordinates:

k1=k cos @ .
k2=k Sin 0 cos ©
(31)
k3=k sin 7} sin [
dr(k)=k*sin 0 dododk
Then
w= [ wawar [ do [t ds (32)

For the present purpose the function G(k), which, together
with' the condition of isotropy, defines the turbulence, may
be left unspecified; the integral involving G(k) will cancel
out in forming the ratio us*/us®. Let this integral have the
value H; then 4

w| oo

~H :

=
By virtue of the assumed isotropy

DA2=QDA2=— TH

3

Evaluation of ratio of @@ at downstream station to «® at
upstream station.—The mean value g is obtained from an
integration involving the spectrum tensor after the latter
has been transformed by passage of the flow through the
tunnel contraction; according to equation (16b)

Ru?(0)=ug’= f ff T'®(0dr(®)

For the present case, where the spectrum tensor at station
A is assumed isotropic and the contraction is axisymmetric,
the transformed tensor TI'y®(x) has been determined in
equation (24). Thus

_qa
w2

Because of the unspecified function G(k), it is convenient to
change the variables of integration from the components of
& to the components of k. In other words, a transformation
is made from the ‘“wave-number space” of station B to the
“wave-number space” of station A. The transformation
. follows from the Cartesian relations

dr (_’5)=dk1dk2dka
dr (=dxdrdrs
_dy b di

h L &

GO (E—EHdr (v
(Gk12+k32+k32)2 i

(33)

 isotropic.

together with L,=I, for an axisymmetric contraction, whenco

—_— 1 >
w=p ) )

Again the polar-coordinate transformation (equation (31))
is made, with the result

) — ke )dr (B)
(€k12+k22+k32)2

—2___1_f°°' f’h fr sin® 9df
U =7z |, kiG (k)dk 0 de o (e cos? §-}sin? 0)

The first two integrals occur also in u (equation (32)), and
they cancel in obtaining the ratio us*/u®; thus

u_ 3 (= sin’6do
uld 42 Jo (e cos? 64-sin? 0)?

The final result may be written

_@ 3 -1, 2—¢

Ll 4
u’A’ 4l12 1—e 1 (1_6)3/2 (3 )

mnh-lﬁ::l

and an asymptotic expansion for small ¢ is

'11:32 3 3 €
'u,=A’= —-4? [1 +'§ é+(1 -_l-e)ln Z+O (6211]: G)]

Equation (34) gives the ratio of the mean-square longi-
tudinal velocity fluctuation downstream of an axisymmetric
tunnel contraction to the corresponding mean square up-
stream of the contraction, when the initial turbulence is
The contraction is characterized by an increase
in the stream speed in the specified ratio §; and a decrease
in the lateral dimensions in the specified ratio &; the param-
eters I}, &, and e=L?/l,* are completely defined by the initial
and final Mach numbers of the stream according to oqua-
tions (30a) and (30b).

Al

The variation of y#uz/w.? with the speed, ratio /; is plotted
in figure 4 for two examples: in the first the flow is assumed
compressible with & Mach number 0.05 at the start of the
contraction; in the second the flow is assumed incompres-
sible (M4, Mz—0). The Mach number scale at the bottom
applies only to the compressible case, the [; scale to both
cases. The salient characteristic of the curves is the marked
reduction in the longitudinal component of turbulence with
increasing speed ratio [;.

Compressibility is seen to have but a secondary effect,
which is appreciable only at supersonic speeds. Note
(equations (30) and (34)) that with /; as the independent
variable, the effect of compressibility appears only in the
parameter e. 'The physical significance of ¢ follows from the-
definition of I, as the speed ratio provided by the contraction
and ? as the area ratio of the contraction (in the axisym-
metric case considered), with e=0L?%[? For supersonic final
speeds it is more proper to speak of a converging-diverging
nozzle than & contraction, the term ‘contraction’ having
been retained herein primarily for reasons of past usage.
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The basis of the compressibility effect may be summed up
in the following way. The influence of an axisymmetric
stream contraction arises from distortion of the fluid ele-
ments, as described by the parameters /; and ;. (See fig.1 (b).)
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F10URE 4.—Typlcal examples of selective effect of axisymmetric stream contraction without
decay on components of turbulent Intensity, showing influence of compressibility. Iso-
tropie turbulence at I;=1.

These parameters are related by the continuity condition
olil*=1, where o i3 the density ratio. Thus compressibility,

in allowing ¢ to deviate from unity, changes the relation °

between [; and /, somewhat, and consequently modifies the
contraction effect.

The graph of equation (34) in figure 4 is primarily for
illustrative purposes; a form more useful for engineering
applications is given in figure 5. The single curve provides

the variation of -\/u_Bi/;f with both [; and ¢; /; and ¢ may
be determined from the initial and final Mach numbers by
means of the simple relations (302).

Eveluation of ratio of ¢ at downstream station to »* at
upstream station.—The value of v results from an inte-
gration involving the transformed spectrum tensor, accord-
ing to equation (16b)

25P(0)=05"= f Ifr,f@df(ﬁ)

TFor isotropic initial turbulence and an axisymmetric con-
traction, the transformed spectrum tensor I'x®(x) has been
evaluated in equation (25). Thus

=llfff0(k)[k’ b TR

k2l —k %) (1—e)
' e e
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FIGURE 5.—Variation of relative root-mean-square longitudinal velocity fluctuation with
both speed ratio /) and area ratlo {3 for axisymmetric contraction and isotrople turbulence
at =1,

Again it is convenient to transform from x-space to k-space
(equations (33)) and to introduce polar coordinates k, o,
and 8 (equations (31)). ~The integrations with respect to k

_and ¢ are readily disposed of, with the result

sin3 0 cos? 0d6

= [%f sin® 0 do—2x(1— e)f It

(1— ),f' sin® 6 cos® 6d6 :l
T " )o (sinf 6+¢ cos® 0)

where H= j; 0 k*Q(k)dk, as before. Upon carrying out the
integration and dividing by a’=§wH, there is obtained
finally . '

258 3 [2—e .
2e 8L I—e (I— e)w

tanh! /T—_e] (35)

For small ¢ this has the asymptotic expansion

H il [sverhon oo

Equation (35) gives the ratio of the mean-square lateral
velocity fluctuation downstream of an axisymmetric tunnel
contraction to the corresponding mean square upstream of
the contraction, where the turbulence has been assumed to

be isotropic. The variation of /v ,_l;’/v_;;2 with the speed ratio
1, is plotted in figure 4, which already contains the graph of

\/ua us® discussed earlier; again the two cases are incom-
pressible flow and compres&uble flow with an initial Mach
number of 0.05. For 5;>1 and incompressible flow, the °
lateral component of turbulence is seen to increase steadily
with /;, in marked contrast to the decrease exhibited by the

-~
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longitudinal component. The curve (of the lateral com-
ponent) for compressible flow begins to differ sensibly from
the curve for incompressible flow for downstream Mach
numbers above 0.3; above sonic speed compressibility is seen
to effect a complete reversal of the curve. The over-all
effect of compressibility on the contraction effect is thus
much greater for the lateral than for the longitudinal com-
ponent of the turbulence.

The graph of equation (35) in figure 4 is primarily illus-
trative; a form more useful for engineering applications is
given in figure 6. The single curve provides the variation
of +/v5*/v.® with both [/, and ¢; [, and ¢ may be determined
from the initial and final Mach numbers by means of equa-
tions (302).

-DECAY CONSIDERATIONS

CRITERIA FOR NEGLIGIBLY SMALL DECAY

The basis of the present analysis of the contraction effect
is embodied in equations (11a) relating the precontraction
and postcontraction vorticity distributions. The simplicity
of this result and its derivation arises from the neglect of the
turbulent decay; by decay is meant the viscous dissipation
and all the (nonlinear) intermixing processes of the eddies
which together cause the mean turbulent intensity to dimin-
ish with time. The postulation of an inviscid fluid elimi-
nated the viscous dissipation, and the limitation to very
weak turbulence eliminated the intermixing processes.
(While there can be no dissipation in an inviscid fluid, the
intermixing processes ordinarily associated with decay will
occur.) In order to assess the influence of these assumptions,
equations (11a) will now be derived in & more general fashion
with the Navier-Stokes equations as the starting point. For
simplicity the fluid is taken to be incompressible, since the
major conclusions are unaffected thereby.

General formulation of changes in vorticity.—By rearrange- |

ment and cross differentiation to eliminate the pressure term
(ref. 8, p. 578), the Navier-Stokes equations can be trans-
formed into :

le bql J~ bql J_ bql'

Dt oz ' Dz, ' ® oz, (36)

F ¥V

and two similar equations where w=w;, ws, w; is the vor-
tlclty and ¢'=q\’, ¢;', ¢+’ is the resultant velocity. Now let
¢’ be the sum of a stream velocity U, V, W and a turbulent
velocity field g=q, q., gs; also, let curl U, V, W=0, so that
@ is just curl q. Then equation (36) becomes (in tensor
notation) -

(37)

%ﬂ “"’ax +“’"a TV
\M-’ \.’\/\/

Contraction Decay

and there are two similar equations. The first set of terms
on the right-hand side is identified as the contraction effect,
the second set as the decay effect. First the decay terms
will be neglected in an attempt to recover equations (11a);
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FIGURE 6.—Variation of relative root-mean-square lateral velocity ﬂuotuatloﬁ with both
speed ratio I; and area ratio {3 for axisymmetric contraction and isotroplo turbulenco at
h=l,

then the neglected decay terms will be exammed and eri-
teria for their neglect arrived at.

Neglect of decay terms.—Equation (37) minus the viscous
terms reads, in expanded form,

Do oU+tq),  oU+taq),
‘Dt T oz T da,

OU+aq)
3 b:cs (38)

In this and the earlier equations g is the ‘Lagrangian’ de~

rivative following the fluid motion. Now consider a line
segment &z, 82, 52 following the fluid motion: its Lagrangian
derivative can be shown to be

Do dU+aq),, dU+g), . ' dU+g)
Dt oz o1 b:cl 1+8$9 b:cg : +§xaT$3£ (39)

and two similar equations. It can be seen that a solution of
equations (38) and (39), together with theu companion
equatlons is given by

w1, W, %Naxh 82’2; 52’3

for all time ¢; this result is well known. Now complete the
neglect of the decay terms by omitting the terms in ¢, in
equation (38) and correspondingly in equation (39). By
this neglect the turbulent perturbations of the flow stream-
lines have been suppressed: this can be inferred from the
revised equation (39). If the particles are at station A at a
time {=0 and reach station B at time {=1{, there results

oo’
Wt Szt
82313

B
and two similar equations. But Sod is just /j, —;i:-’j is l,
. 1 2
and 2 i 1,
Szt ’
Therefore equations (11a) have been recovered for the in-
compressible case (density ratio o=1).
Consideration of inertial decay terms.—In equations (37)
to (39) the decay terms not involving » are the inertial or
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intermixing terms. These are seen to be nonlinear. The
condition for their neglect is evidently ’
bq1 bU
% S| <|“* 3z; (40)

and two similar conditions between ¢; and V, ¢ and W,
respectively. In a contraction like that of a wind tunnel,
oU 2V bW
oz, dz; Oz
these will be of the same order of absolute magnitude. A
sufficient condition to replace expression (40) is therefore

oU
<oz

the dominant velocity gradients will be

0q.
b’.tg

(41)

that is, all of the turbulent velocity gradients are very much
less than the axial gradient of the stream velocity. This is
essentjally the assumption underlying the distortion equa-
tions (10), which led directly to the vorticity changes (11a)
in Taylor's method.

In statistical terms an approximate inference from equa-
tion (41) is, for isotropic turbulence,

VG)=

But by definition of A this may be written

W

—<

oU
bxl

oU
aﬂ?l

The “microscale” A may be interpreted as a sort of average
eddy diameter weighted in favor of the smaller eddies.
Equation (42) may be accepted as a practical criterion for
the neglect of the inertial decay terms, equivalent to one of
the two assumptions underlying equation (10). The other
assumption, neglect of viscosity, is considered next.

Consideration of viscous decay term.—The viscous decay
term in equation (37) is the term containing ». This term is
linear and so will affect individual plane waves separately
without mutual interference. The magnitude of the term
may be estimated to a sufficient approximation by considering
o wave carried along by the contracting stream and neglect-
ing (for this term only) the distortion of the wave imposed
by the contraction. Thus a2 component of the wave may be
written

(42)

Wy =ngi (krz—E,U2)

Then, if the inertial decay terms of equation (37) are negli-

. . oU| _|oU
gible, the equation reads, =l5z:<I3%;
DDc;l—wl a +PV2w1
'—wl b +V(k12+k22+k32)w1
=y 2U+Vk2> *

and'

Accordingly, viscosity may be neglected for that portion of
the spectrum which satisfies the inequality
el @
1
In the “initial period’’ of decay, if the inertial decay criterion
(42) is satisfied, the major part of the speetrum will satisfy
condition (43).

ROUGH ESTIMATION OF MUTUAL EFFECTS OF DECAY AND CONTRACTION

When the decay effects are not negligible compared with
the contraction effects (see criterion developed in the last
section) the theoretical basis of the present theory of the
contraction effect is violated. Because negligible decay is
more the exception than the rule, there is considerable
incentive to attempt to apply the theory outside the valid
range by means of assumptions concerning the simultaneous
effects of decay and contraction.

Suppose, now, the decay and the contraction are considered
to occur alternatively.in small steps, starting from isotropic
turbulence. Kach stream tube is considered to contract
stepwise: between steps there is decay without contraction;
at each step there is & sudden contraction without decay.
Let the change in speed ratio per step be dl;, the reduction

in %2 due to decay be (du?)p, and the reduction in %* due to

contraction be (du®)e. Express the effect of decay in the
absence of contraction in the form

(&),

where /; is & function of the time of travel (deoay time) ¢,
and the effect of confraction in the absence of decay in the

(44)

form
(&)
e c=0(l1) : . (45)
The corresponding differential forms are
(du?)p_ D'l :
B R )
) '
(d'u' C_O (ll) dl, (47)

(A

The assumption is now made that equation (46) applies to
the decay effect per step and equation (47) to the contraction
effect per step, the only interaction being in the common
u.® This assumption neglects the tendency of the decay

L process to counteract the anisotropy ‘introduced. by the

+1t Is known that In the ‘Initial’ perlod of decay -d—f’—"w——-t_f’di. Equatlon (46) amounts
A =

to replacing the —u? on the right-hand side by —{u?) deesy only; 80me defense may be
mads of this approximation, considering the progressive deviation srom isotropy.
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contraction effect. The total effect per step is then

daT o0y D' ‘
o o |

whence upon integration the over-all effect is

’

= —C’ (ll)D(ll) (48)
uy’

That is, if the effect of contraction alone is expressed by
C() (equation (45)) and the effect of decay alone by D(l;)
(equation (44)), then the joint effect under the assumption
is expressed by the product C({,) D).

Equation (48) is intended to provide a very rough ad]ust—
ment of the theoretical contraction effect C(l;) to account
for decay. This adjustment will be made in the attempt
to compare the theory with experimental results in which
the decay effects are of the same order as the contraction
effects.

Equation (48) refers to the longitudinal velocity com-
ponent u; an equation of the same form is obtained for the
lateral component ». For both cases the function D) is
taken to be the right-hand mde of the empirical decay law

(ref. 9)
(&) —
wi/p 1/__

14-0.58-

D) (49)

t(ll)

for isotropic turbulence in the initial period. The decay
time #(/;) in the formula is the time required by’ a particle
of the main stream to pass through the contraction, the
initial velocity being U, and the final velocity I, U..

COMPARISON WITH EXPERIMENT

There appear to have been no experimental investigations
with which to compare the predicted changes imposed by a
stream contraction on the spectrum of the turbulence, or
‘on the correlation tensor of the turbulence. The available
experimental data seem to be limited to measurements

bearing on the changes in the root-mean-square velocity '

components. These data apply, moreover, to conditions
outside the proper scope of the present theory in that large
decay effects are present. The experimental data are’there-
fore compared with a crude extension of the theory in which
the decay is allowed for in first approximation. (See pre-
ceding section.)

The most extensive data are those of MacPhail (ref. 10),
which in effect cover a range of contraction ratios from
Li=1 to [;=9.65 inasmuch as measurements were made at
various stations along the contraction. Isolated points for
particular contraction ratios were obtained from investiga-
tions made for other purposes by Dryden and Schubauer
(vef. 11) and by Hall (ref. 12). Only those points were
chosen for which the initial turbulence was indicated to be
approximately isotropic.

-
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In table I are listed, for the three experimental arrange-
ments, the parameters used in the estimation of the decay
factor (equations (48) and 49)). In reference 10 the initial

‘gtream velocity U, and scale of turbulence L, were given.

In reference 11 the value of U, was given, and the value of
L, was taken to be 0.05 foot, the only scale mentioned; it
was not clear, however, whether this value of scale applied
with or without screens. In reference 12 the value of U,
was inferred from collateral information and is somewhat
uncertain; the scale L, was estimated from the dimensions
of the honeycomb. In all three experimental arrangements
the initial relative levels of turbulence were specified. The
decay time ¢ of the turbulence was computed as the time for
a particle to traverse the conftraction; the value arrived at
for Hall’s data (ref. 12) reflects the uncertainty in the
assumed U,.

Root-mean-square longitudinal velocity components.—
The comparigon of the theory, including estimated decay,
with experiment for the longitudinal component of turbulence
is given in figure 7. The theoretical curve, in each instance,
is the product of a value computed for contraction alone,
neglecting decay, (obtainable from fig. 5) and a value esti-
mated for decay alone neglecting contraction. (See equa-~
tions (48) and (49).) The agreement with MacPhail’s data
and with Hall’s single point can be considered good. The
agreement with the Dryden-Schubauer point, on the other
hand, is poor; a slight.improvement would result on correc-
tion for the spurious contribution of the noise background.

1.0 ———
I l | Experiment
o MacPhait (ref. 10)
9 © Dryden-Schubauer {ref. 11)
b o Hall {ref 12)
8 Theory with estimoted decoy
s . for experiment of MocPhail
= —-— for experiment of Dryden-Schubouer.
s 1t 1 ofee---- for experiment of Holl
s T
2
> \o y
'g 6 k’
s O
£ 5
3 D
2
=1 ;
s 4 \\
g N
S \\ o
g 3 N
1q
E: ™~ 7]
.2 =
o~ )
| o| | T
0
[ 2 3 4 5 6 7 8 9 10

Mean velocity ratio, ;

FIGURE 7.—Comparison of predicted axisymmetric contraction effect with oxperimont for
longitudinal component of turbulence, with decay allowed for In first approximation.
Initial isotropie turbulence assumed. -
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Root-mean-square lateral velocity components.—Com-
parison of the theory, again including estimated decay, with
experiment for the lateral component of turbulence is given
in figure 8. There is complete disagreement with MacPhail’s
data and Hall’s single point, and on the other hand, good
agreement with the Dryden-Schubauer single point. Thus
there is the curious result that MacPheail’s and Hall’s data
agree well with theory for the longitudinal component and
disagree entirely for the lateral component, whereas the con-
verse is true for the Dryden-Schubauer data.

Discussion.—The uncertainty both in the manner of
estimating the decay effect and in the data (table I) on which
the estimate was based is still far from sufficient to account
for the discrepancies between theory and experiment for the
lateral component of turbulence. The very large amplifica-
tion found by MacPhail is particularly hard to explain. On
the other hand, the experimental data of the several ob-
servers show considerable disagreement, especielly when
differences in decay are allowed for. This disagreement
would tend to cast doubt on the validity of some of the data;

I 1 llixpe'rimlent
o MacPhail (ref. 10)
¢ Dryden- Schubauer (ref. 11)
o Hall {ref. 12)
Theory with estimated decay
for experiment of MacPhail
—-— for experiment of Dryden-Schubouer
------ for experiment of Hall
2.2 p
_ _
2.0
1.8 ;
;_ 1.6
°
2 >
S 14
= l-—1
> > T
8 2 -
E ' |
g ° ///
k] 1o =
(%)
E //
::): 8 \ P o o
°
2 . \|_}+
4
2
Y 2 3 49 5 [3] 7 8 9 10

Mean velocity ratio, 1,

Fioure 8,—Comparison of predieted axisymmetric contraction effect with experiment for
Iateral component of turbulence, with decay allowed for in first approximation. Initial
fsotrople turbulence assumed.

the disagreement may also be in part a consequence, pre-
dicted by the theory, of possible differences of the initial
spectrums from each other and from isotropy.

CONCLUDING REMARKS

The original aim of this paper was to provide a quantitative
explanation of the observed changes in il i0ot-mean-square
velocity components of the turbulence of & wind-tunnel
stream after passing through the tunnel contraction. The
simplifying assumption of negligible decay was made to make
the analysis tractable, although the decay and contraction
effects are ordinarily comparable. The analysis on this basis
disclosed, in addition to the above integrated effects, pro-
nounced changes in the spectrum of the turbulence. The
changes in the shape of the spectral density curves, as dis-
tinguished from over-all changes in amplitude, would appear
to be considerably less sensitive to modification by decay than
would the mean-square velocity components. For this
reason, and because such spectral changes have mot pre-
viously been discusseéd, the emphasis of the present paper
has been placed most heavily on these spectral effects.

In particular, it has been found that the one-dimensional
longitudinal spectrum for isotropic turbulence exhibits a
rather interesting change in shape downstream of the con-
traction; the center of gravity of the curve of spectral density
versus longitudinel wave number is shifted substantially to
higher wave numbers, the resulting distortion moving the
peak of the curve well to the right of its initial position above
the origin. The distortion is quite pronounced and would
appear to be readily amenable to experimental observation.

The restrictive assumption of negligible decay largely de-
feats the original aim of the paper. Nevertheless, for
practical reasons an attempt has been made to provide &
crude extension to the theory in which decay is allowed for in
first approximation. With this approximation the theory
has been compared with experimental values of the contrac-
tion effect on the longitudinal and lateral component root-
mean-square velocity fluctuations. The agreement for the
longitudinal component is good, whereas there appears to
be almost complete disagreement for the lateral component,
the experimental data themselves being in conflict. It is
perhaps premature to attempt any general conclusion. For
the present, the theory as augmented by the estimated decay
effect may be useful in wind-tunnel-design applications.

It is clear that the tunnel contraction effect on the com-
ponents of turbulent intensity cannot be represented by fixed
fractional changes independent of the character of the initial
turbulence. Instead the separate factors for the longi-
tudinal and lateral components depend markedly on the
spectrum of the turbulence. For initial isotropy, however,
unique factors are predicted that, when decay is neglected,
are independent of the details of the spectrum.

Lewis FriceTr PropuLsioN LLABORATORY
NarTioNaL Apvisory COMMITTEBE FOR AERONATUTICS
CrLeEveLAND, OnI0, August 30, 1951



114

REPORT 1113—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

Sp—— , APPENDIX A
. , " SYMBOLS
The following notation is used in this report: ( (e—1)k* )
. . t1 2 g 1
The subscripts 1, 2, 3 refer to a rectangular coordinate t parameter in equation (28)
system with the 1-axis alined with the axis of the main flow | ¢ time )
and directed downstream, the 2-axis directed horizontally, | U main-stream velocity )
and the 3-axis directed vertically. Separatesystemsareused | %oW= ¢, &, ¢s disturbance velocity components
X length of wind-tunnel contraction (distance be-

with the origins at stations A and B, respectively. (Seefig.1.)
Vector and tensor notations are used interchangeably; for
example, k=k,= (%, ki, %), where a=1, 2, or 3 designates
8 vector with components %y, ks, and k;.

cy) function defined in equation (45)

D) function defined in equation (44)

D edge length of cube within which turbulent field
is defined

e base of natural logarithms

Fa— Fl, Fg, or F3

F one- dlmensmna.l longitudinal spectral density
(see equation (7))

Iy, F,y one-dimensional lateral spectral densities (see
equation (7)) -

G(k) function appearing in isotropic spectrum tensor

H - . constant ( f kG (k) dlc>

0
Im imaginary part of )

= 1
Kl, KQ, K;—-kl—l‘kl 5 kg‘l‘lf@ , kg‘l—ka y respectlvely

k amplitude of k(=+EkF+k:21+k3)

k= ko= (k1 k2, k;) wave number vector (station A)

L lateral scale

la ll: lﬂ: lz

A stream velocity at station B divided by stream
velocity at station A (see fig. 1)

A stream breadth at station B divided by stream
breadth at station A (see fig. 1)

by stream height at station B divided by stream
height at station A (see fig. 1)

M Mach number of main stream

N amplitude of special isotropic spectrum tensor
(see following equation (26))

0= Q= (G1, @3, @) disturbance wave amplitude vee-

tor

g= =(q1, g2, ¢:) disturbance velocity vector

Ros(r) correlatlon tensor (ref. 6)

Re real part of

r magnpitude of r=+/r2t-rs?-}rs?

r= ro=(r1, 12, 13) separation vector of two correlated
points

8 parameter in equation (28) (— + 1)

q"‘M ol

tween stations A and B)

used occasionally in place of z;

Zo=(T,, 73, T3) position vector (station A)

a8 (k) spectrum tensor (ref. 3)

constant in special isotropic spectrum tensor
(see following equation (26)) (y=1/L)

contraction parameter (=5L?/l*; see fig. 1)

alternating tensor defined after equation (9)

polar angle (equation (31))

magnitude of 5(=-\/x1’+x2’—|-fc3’)

ko= (x1, xs, x3) transformed wave number vector

T (station B); (xa=ka/ls)

kinematic viscosity

magnitude of {(=vE*+& &)

t.=(f, &, &) transformed position vector
(station B) (see equation (10) and fig. 1(b))

summation over « for a=1, 2, 3

R Hiy 8

Ix & < m
i £

-

stream density at station B divided by stream
density at station A

& volumeé

azimuth angle (equation (31))

Qo= (@, U, @) vector amplitude of vorticity wave

wa= (w1, @3, ws) vorticity vector

g 106 3
[

Superscripts:

A measured in vicinity of station A, upstream of
contraction

B measured in vicinity of station B, downsiream
of contraction

* complex conjugate

Subseripts:
A measured in vicinity of statiod A, upstream of
' contraction
B measured in vicinity of station B, downstreu.m
of contraction
. take on values 1, 2, or 3 -and designate tensor
quantities
specific values of «, B, v, or §

a,f,7,0
1,2,3

A symbol with the mark ~ above it refers to a single plane
wave. A bar over & symbol designates an average (usually
a spatial average); & bar under & symbol designates a vector.
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APPENDIX B
EQUIVALENCE OF SPACE AND TIME AVERAGES IN STATISTICALLY STEADY, HOMOGENEOUS TURBULENCE

The definitions of statistical homogeneity and statistical
time independence will first be made precise. Let F (z, 9, 2, )
be some property of a turbulent field that varies ip time
and from point to point; thus 7 may be the pressure, or any
of the velocity components, or a correlation of velocity com-
ponents at two points of fixed separation, (z, ¥, z) being one
of the two points. If, for all choices of the property F, (a)
the average of F over & time T— « is independent of (z, ¥, 2),
the turbulence is defined to be statistically homogeneous;
if (b) the average of F over a volume V— o is independent
of ¢, the turbulence is defined, in the sense used herein, to be
statistically steady or time-independent. The respective
averages are supposed to be approached uniformly, in the
mathematical sense, as T or V, respectively, approaches
infinity. (A statistically steady or “stationary’’ condition is
defined differently in the theory of random processes.)

It will now be proved that if the turbulence satisfies the
two conditions (a) and (b), the time and space averages
defined therein are equal. In this proof, no resort will be
made to the ‘“‘ergodic hypothesis’ of statistical mechanics,
which leads to the equivalence of the time average and the
“ensemble’” average. The possibility of the joint existence of
the conditions (a) and (b) probably amounts, however, to
just as fundamental an assumption.

The space average will be made over a parallelepiped of
edges a, b, ¢ and the time average over a time 7, and then a
limiting process will be applied. The average of F over both
space and time is thus

—_— . 1 T (¢ b fra
Fo=_lim opor fo ﬂ ﬁ ﬁ Fadydzdt  (B1)

Any order of integration is permissible, since the integra-
tion limits are constants. If the time integration is per-
formed firat the expression may be written

—_— N 1 c b ra T
F,_,—a,b}:'xqr'l_m 25T .I;J;J; <J; Fdt ) dzdydz

By virtue of the postulated uniform convergence of the time
and space averages, the operation T lim ! may be brought under
the integral sign:

— . |
Foi= Jim Eb? I f f (T% Tﬁ) th) dndyds
=i, a5 ﬂ ﬁ, ﬁ Fidzdydz

where F, is the time average of F. But, by condition (a),
T, is independent of z, y, and z. Therefore

(B2)

el

_F'c.t=

®3)

Alternatively, the space integration and limiting process
may be performed first:

.,~T' Tf (b abcfff Fda:dydz)dt
det
T—-»u:

where F, is the space average of F. By condition (b), F, is
independent of Z; therefore

(B4)

_F-:.t=7': CB5)
Equations (B3) and (B5) together state that
E=F,I=F: t (B6)

or the space average, the time average, and the space-time
average are all equal.
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TABLE 1.—DATA FOR ESTIMATION OF DECAY

I U, La, L,

Source ftfsec ft seg U4l

MacPhail (ref. 10). o0 ool 1.20 3.55 0.012 0.19 0.149
1.60 3.53 .012 IS - 2 R,

2.55 3.55 .012 45 | e

4.90 3.55 .012 I ) R [,

9.65 3.55 .012 .7 2

r{{den Schubauer (ref. 11) oo oon 6.6 6.86 .05 1.31 114

Hall (ref. 12) oo ool 5.2 1.54 025 122







